About MS  > MS news and research
About MS

What is MS?

MS symptoms

Managing your MS

Effects of MS

MS news and research

Bacteria and viruses

Biomarkers and microRNA

Cancer and MS





Endo-parasites and helpful organisms

Environmental factors

Ethnic groups, geographical regions and MS




Immune cells

Inflammation, lesions & 'black holes'


Medical imaging

MS Symptoms research

Multiple Sclerosis (etiology)


Nerves, brain cells and spinal cord

Paediatric MS


Potential viral causes

Quality of life


Sex and MS

Stem cells


Types of MS


Vitamin D

World MS Day

News and research archive

Other support

Donate with JustGiving

Latest Tweets

Multiple Sclerosis (etiology)









Celiac disease linked to increased risk of nerve damage(13/05/15)

People with celiac disease may be at higher risk of neuropathy, according to a new study published in JAMA Neurology.

Celiac disease can affect everyone differently, meaning it can be tricky to diagnose. However, digestive symptoms - such as diarrhea, vomiting, abdominal bloating and pain and weight loss - are most common in children, while adults with the condition are more likely to experience fatigue, bone or joint pain, arthritis or other non-digestive symptoms.

It is estimated that around 1% of the US population - the equivalent to 1 in 133 Americans - have celiac disease, though it is thought around 83% of these individuals are undiagnosed or misdiagnosed with other illnesses.

The association between celiac disease and neuropathy, or nerve damage, is not new. According to the researchers of this latest study, including Dr. Jonas F. Ludvigsson of the Karolinska Institutet in Stockholm, Sweden, it was first identified almost 50 years ago.

Untreated celiac disease has also been linked to increased risk of nerve-related conditions, such as multiple sclerosis (MS).

For their study, Dr. Ludvigsson and colleagues set out to determine the absolute and relative risk of neuropathy among a nationwide population-based sample of patients with a confirmed diagnosis of celiac disease.

2.5-fold increased neuropathy risk for patients with celiac disease
The study included 28,232 individuals from Sweden whose celiac disease was confirmed with small-intestine biopsies, alongside 139,473 age- and sex-matched controls.

The researchers identified 198 (0.7%) participants with celiac disease who were later diagnosed with neuropathy, while neuropathy was later diagnosed in 359 (0.3%) of control participants.

The team calculated that overall, participants with celiac disease were around 2.5 times more likely to receive a later diagnosis of neuropathy than those without celiac disease.

The absolute risk of developing neuropathy was estimated to be 64 per 100,000 person-years among participants with celiac disease, while the absolute risk of neuropathy was estimated at 15 per 100,000 person-years among participants free of celiac disease.

Commenting on their findings, the researchers say:

"We found an increased risk of neuropathy in patients with celiac disease that persists after celiac disease diagnosis. Although absolute risks for neuropathy are low, celiac disease is a potentially treatable condition with a young age of onset."

The team adds that the study indicates patients with neuropathy should be screened for celiac disease.

In November 2014, Medical News Today reported on a study suggesting that some non-gluten wheat proteins may trigger celiac disease.

Published in the Journal of Proteome Research, the study revealed that non-gluten proteins including serpins and purinins triggered a greater immune reaction among patients with celiac disease and dermatitis herpetiformis - a rash associated with the disease - than among those without such conditions.

Source: MNT © 2004-2015 MediLexicon International Ltd (13/05/15)

Doctors urged to consider diverse symptoms(20/04/15)

Medical professionals have been urged to consider a wide range of possible symptoms when it comes to neurological conditions such as multiple sclerosis.

The move comes after a case where a seven-year-old boy's only symptoms were abdominal pains.

According to the study 'Acute Abdominal Pain As The Only Symptom Of A Thoracic Demyelinating Lesion In Multiple Sclerosis', published in the journal Brain And Development, the child had a new demyelinating lesion that showed up on his spine.

The boy had his first MS symptom at the age of three. At that time, he had spastic gait and was treated with intravenous methylprednisolone (m-PSL). Although he continued to have slight spasticity in both his ankle joints, his symptoms were greatly improved.

Later, at the age of six, the boy had a second MS symptom. He appeared at the doctor due to neck and upper extremity pain and was diagnosed with multiple sclerosis. A more aggressive means of treatment included interferon-beta 1a (IFN β 1a) and plasmapheresis in addition to m-PSL. Treatment with IFN β 1a was stopped because the boy had frequent episodes of vomiting and poor eating, both of which cleared up one month after stopping IFN β 1a treatment.

With the newest relapse, the boy was treated again with m-PSL and IFN β 1b (rather than IFN β 1a). Remarkably, there was a reduction in the demyelinating lesion with the end of treatment, as well as a resolution of symptoms after three weeks.

“This case is remarkable in that the only symptom of a longitudinally extensive, thoracic, demyelinating lesion was abdominal pain,” said Dr. Shohei Nomura, lead author of the case study.

“Though it is unclear why the only manifestation of this patient’s extensive thoracic lesion was abdominal pain, this case supports the notion that the size and localization of demyelinating lesions might not directly correspond to the symptoms observed. Therefore, clinicians must be careful to consider neurogenic sources of diverse symptoms, especially those related to autonomic dysfunction, in demyelinating diseases such as multiple sclerosis.”

Source: Multiple Sclerosis News Today © BioNews Services 2015 (20/04/15)

Spinal cord and retinal measures independently relate to MS disability(12/02/15)

New research found statistically significant correlations between MRI measures of the spinal cord, optical coherence tomography measures of the retina, and clinical disability.

Two common categories of multiple sclerosis symptoms, visual and sensorimotor, are associated with lesions in the spinal cord (SC) and optic nerve. The symptoms also co-occur frequently in specific classes of demyelinating diseases such as neuromyelitis optica. Researchers from Johns Hopkins University recently tested for a relationship between the two central nervous system structures (Oh et al., 2015).

The team conducted MRI scans of the spinal cord and optical coherence tomography scans of the retinas of 11 healthy controls and 102 patients with MS: 66 relapsing-remitting and 36 progressive. They assessed the participants for visual acuity and sensorimotor dysfunction, and then looked for statistical associations between scans and clinical phenotype.

In a univariate analysis the investigators found several SC-related measures were associated with the peripapillary retinal nerve fiber layer (pRNFL). Incorporating those factors into a multivariate statistical model that controlled for age, sex, and prior optic neuritis, the team then analyzed SC cross-sectional area (SC-CSA), pRNFL, and brain parenchymal fraction . They found that SC-CSA and pRNFL independently correlated with multiple clinical measures. Specifically, both measures had statistically significant associations with low-contrast visual acuity, high-contrast visual acuity and vibration sensation threshold. Additionally, SC-CSA had a significant association with Expanded Disability Status Scale, but pRNFL did not associate with EDSS.

The study adds credence to the intuitive notion that MS has global effects on the central nervous system (CNS). Rather than causing damage in the brain alone, the disease affects all areas of the CNS and, as these data suggest, damage in the SC and optic nerve may be more closely associated with specific clinical symptoms of MS than with brain damage and atrophy.

But the study also had its limitations. The control group was rather small, and though 102 MS patients is a reasonable cohort size, the statistical power dwindles when they are examined by relapsing and progressive subgroups.

In the article, the authors suggest that in the future, SC and retinal scans may supplement brain scans to illuminate causes for specific variations in clinical disability. If their findings are validated, they went on to write, the approach would also better researchers’ understanding of the disease course and progression.

Source: Multiple Sclerosis Discovery Forum Copyright © 2014 MGH and ACP (12/02/15)

Pathological progression of MS documented for the first time(11/02/15)

In a paper published in the journal Lancet Neurology, an international team of researchers from Edinburgh, Cleveland and Vienna, under the leadership of Hans Lassmann, Head of the Department of Neuroimmunology at the MedUni Vienna, has for the first time documented the pathological progress of multiple sclerosis from its early to late stage and also shown that inflammatory and neurodegenerative processes have a role to play.

Until now, there have been two approaches to categorising the condition: the first approach regards MS as a disease of the nervous system that is inflammatory throughout, with the inflammation also being responsible for the subsequent neurodegenerative damage. The second approach postulates that the condition ultimately progresses from an inflammatory condition into a neurodegenerative one. In their current paper however, the team of researchers has demonstrated that MS is comprised of both factors - and that the inflammatory process acts as a "driving force" from the onset right to the end, and that neurodegenerative processes also occur in the so-called progressive, late phase that damage the brain.

Lassmann said: "The inflammatory process, which can be treated effectively in the early stages, becomes less pronounced with age. However the neurodegenerative damage increases. This also explains why drugs that initially work well later lose their effectiveness."

In the later stages of the condition, "amplification mechanisms" are triggered: the damage becomes amplified - and in a "self-contained" cycle that continues to cause destruction. The neurodegenerative damage in the brain activates microglial cells that also drive the disease forward, along with the formation of oxygen radicals that destroy lipids and proteins in the brain. At the same time, damage occurs to the mitochondria, which act as the power plants and energy providers to cells in the brain. This - coupled with normal brain ageing and the associated deposition of iron - also causes further damage.

New approaches to treatment could be developed based on the new discoveries about all of these mechanisms, say the researchers. "There are two routes", says Lassmann. "First, drugs could be developed that have an anti-inflammatory effect in the brain too, not just suppressing the defence response in the blood and lymphatic organs. Secondly, neuroprotective treatments could be developed that block the amplification mechanisms and damage to the mitochondria, thereby preventing consequential damage."

Clinical studies involving a number of potentially useful medications are already under way on the basis of this new data. The results will not be known for at least five years.

Lassmann said: "I firmly believe that in the foreseeable future, so within the next five to ten years, we will be successful in fighting the amplification mechanisms and slowing down the progressive phase further."

Source: Health Canal (11/02/15)

Study looks at glucose and MS(03/02/15)

A study by researchers from Finland and Colorado have found that there may be a link between how the body deals with glucose and mobility in people with MS.

Eight patients with MS and eight controls performed 15 minutes of treadmill walking at a self-selected pace, during which the glucose analogue [18F]-Fluorodeoxyglucose (FDG) was injected. Immediately after the period of walking, the participants underwent a positron emission tomography (PET) scan.

Patients with MS had lower FDG uptake in 40 per cent of the brain compared to the healthy controls and walked at a slower speed. Within the area of lower FDG uptake 15 regions were identified. Of these, 13 were found to have strong to moderate correlations to walking speed within the healthy controls. Within patients with MS, only three of the 15 regions showed significant correlations.

The researchers concluded that walking impairments in patients with MS may be due to network-wide alterations in glucose metabolism. |It is hoped that understanding how brain activity and metabolism are altered in patients with MS will allow for better measures of disability and status of the condition.

Source: Frontiers © 2007 - 2015 Frontiers Media S.A. (03/02/15)

Using no-evidence-of-disease-activity standard for patients with multiple sclerosis(23/12/14)

Maintaining "no-evidence-of-disease-activity" (NEDA) was difficult over time for many patients with multiple sclerosis (MS) but the measure may help gauge a patient's long-term prognosis, according to a study published online by JAMA Neurology.

NEDA has become a new goal for the treatment of MS and an outcome measure because of multiple and increasingly effective therapies for relapsing forms of the neurodegenerative disabling disease. But it's unknown what proportion of patients with MS can be expected to maintain NEDA over time, according to the study background.

Dalia L. Rotstein, M.D., of Brigham and Women's Hospital, Boston, and coauthors investigated the sustainability of NEDA over seven years in a group of 219 patients with MS. Patients had seven years of follow-up that included yearly brain magnetic resonance imaging and biannual clinic visits, although not all 219 patients contributed at each point because there were occasionally missed MRIs or clinical visits. NEDA was measured by relapses, disability progression and MRIs.

The study found that of 215 patients, 99 (46 percent) had NEDA for clinical and MRI measures at one year, at two years 60 of 218 patients (27.5 percent) maintained NEDA but only 17 of 216 patients (7.9 percent) sustained NEDA after seven years. There was no difference in NEDA status for patients with early MS (five years or less since first MS symptom) compared with those patients with more established disease. NEDA at two years seemed as if it may be optimal for predicting disability at seven years but that finding must be further validated, according to analyses by the authors.

"Although NEDA has the potential to become not only a key outcome measure of disease-modifying therapy but also a treat-to-target goal, it will require a comprehensive approach that integrates advances in MRI technology, linkage of blood and cerebrospinal fluid biomarkers, and a high degree of cooperation among investigators," the authors conclude.

In a related editorial, Jaime Imitola, M.D., and Michael K. Racke, M.D., of The Ohio State University Wexner Medical Center, Columbus, write: "NEDA is an ambitious but necessary benchmark, and the current results offer a humbling reminder of the efficacy of today's therapies. Perhaps future evaluation of NEDA in patients with MS should start at the stage of a clinically isolated syndrome, with aggressive and early treatment to determine the overall efficacy of our immune-centered therapies. If, despite all these efforts, we achieve similar results, then loss of NEDA could be a reflection of what we do not target in MS with our existing DMTs (disease-modifying therapies), especially the mechanisms of long-term progression, neurodegeneration and repair that are being investigated now. NEDA is an important goal for MS care, which is starting to move from clinical trials into office practice to achieve the best care for our patients with MS."

Source: Medical Xpress © Medical Xpress 2011-2014, Science X network (23/12/14)

Study explores link between MS and uveitis(22/10/14)

A joint study by researchers from Germany and the US has found that nearly 60% of patients with multiple sclerosis (MS) and uveitis were diagnosed with each condition within five years.

Researchers from the Oregon Health and Science University in the US and the University of Heidelberg in Germany, examined the records of uveitis patients from each university. The study, which is the largest retrospective study of MS in uveitis patients, examined data taken from over 8,000 patients between 1985 and 2013.

The teams found that MS was 18 times more likely to occur in Americans with uveitis and 21 times more likely to occur in Europeans with uveitis, than in those general populations without uveitis.

The study also showed that MS was diagnosed in 29% of patients before uveitis was diagnosed, both MS and uveitis were diagnosed simultaneously in 15% of patients, and MS was diagnosed after uveitis in 56% of patients.

Wyatt Messenger, from the Oregon Health and Science University, who led the research, said: "With a population size four-times larger than any study to date on this topic, our study provides a wealth of clinical information.

"Knowing more about the onset of MS may enable patients to seek treatment earlier, therefore slowing the progression of the disease and limiting the damage done to the nervous system."

Source: American Academy of Ophthalmology (22/10/14)

Could Multiple Sclerosis begin in the gut?(08/10/04)

MS researchers are focusing on the content of the gut’s microbiome as a possible contributor to the body’s autoimmune attack on its nervous system.

Multiple sclerosis (MS) is an electrical disorder, or rather one of impaired myelin, a fatty, insulating substance that better allows electric current to bolt down our neurons and release the neurotransmitters that help run our bodies and brains. Researchers have speculated for some time that the myelin degradation seen in MS is due, at least in part, to autoimmune activity against the nervous system. Recent work presented at the MS Boston 2014 Meeting suggests that this aberrant immune response begins in the gut.

Eighty percent of the human immune system resides in the gastrointestinal tract. Alongside it are the trillions of symbiotic bacteria, fungi and other single-celled organisms that make up our guts’ microbiomes. Normally everyone wins: The microorganisms benefit from a home and a steady food supply; we enjoy the essential assistance they provide in various metabolic and digestive functions. Our microbiomes also help calibrate our immune systems, so our bodies recognize which co-inhabitants should be there and which should not. Yet mounting evidence suggests that when our resident biota are out of balance, they contribute to numerous diseases, including diabetes, rheumatoid arthritis, autism and, it appears, MS by inciting rogue immune activity that can spread throughout the body and brain.

One study presented at the conference, out of Brigham and Women’s Hospital (BWH), reported a single-celled organism called methanobrevibacteriaceae that activates the immune system is enriched in the gastrointestinal tracts of MS patients whereas bacteria that suppress immune activity are depleted. Other work, which resulted from a collaboration among 10 academic researcher centers across the U.S. and Canada, reported significantly altered gut flora in pediatric MS patients while a group of Japanese researchers found that yeast consumption reduced the chances of mice developing an MS-like disease by altering gut flora.

Sushrut Jangi, a staff physician at Beth Israel Deaconess Medical Center in Boston who co-authored the BWH study, thinks that regional dietary influences might even be at play. “The biomes of people living in different areas and who consume Western versus non-Western diets are demonstratively different,” he says. “People who emigrate from non-Western countries, including India, where MS rates are low, consequently develop a high risk of disease in the U.S. One idea to explain this is that the biome may shift from an Indian biome to an American biome,” although there is not yet data to support this theory.

The microbiome theory is gaining so much steam in academia that a coalition of four U.S. research centers called the MS Microbiome Consortium recently formed to investigate the role of gut microorganisms in the disease. The group presented data in Boston showing significantly different gastrointestinal bacterial populations in patients treated with the MS drug glatiramer acetate compared with untreated subjects. How exactly the drug suppresses MS activity is unknown but the findings suggest that perhaps it works in part by altering gut flora and, as a result, suppressing abnormal immune activity. “The gut is well-positioned for an important role in the development of autoimmune disease, including MS.,” says Ilana Katz Sand, an assistant professor of neurology at Mount Sinai Medical Center in New York City and member of the MS Microbiome Consortium. “But important questions remain, such as how MS medications affect the microbiome, how an individual’s microbiome may affect treatment responses, whether particular bacterial species are associated with more severe disease and ultimately whether we can manipulate the microbiome to benefit our patients.”

Katz Sand says that dietary and probiotic approaches to treating MS are worth pursuing, as is a less palatable approach: fecal transplantation. Yet answers in science and medicine are rarely simple, she added, pointing out that in all likelihood MS arises from a complicated confluence of genetic and environmental influences that might ultimately trigger autoimmune activity. Beyond just our gut flora well over 100 genetic variants—many related to immune function—are now known to contribute to the disease as are external factors including vitamin D deficiency (MS is more common at higher latitudes), smoking and increased salt intake.

Further confounding our ability to pinpoint root causes is that our genetic code influences how our bodies and brains respond to these external factors. It could be that both genes and environmental stimuli lead to pathologic microbiomes or that some unfortunate combination of these factors leads to a common autoimmunologic pathway that ravages myelin. “We know the microbiome shapes our immune system and that MS is an immune-mediated disease. We also know that genes influence our microbiomes and immune systems,” says David Hafler, professor of neurology and immunobiology at Yale University School of Medicine who was at the conference but not involved in the microbiome work presented. But there must be nongenetic factors contributing to the disease, too, given that the incidences of MS and other autoimmune disorders are increasing.

“Maybe it’s a lot of little factors like low vitamin D, increased body mass index and increased salt intake,” Hafler says, “but I wouldn’t be surprised if it was one big thing, much like how H. pylori was found to cause ulcers. No one’s identified a clear bug that’s driving MS but I think it’s important we keep looking.”

Source: Scientific American © 2014 Scientific American, a Division of Nature America, Inc (08/10/04)

Categorisation of multiple sclerosis relapse subtypes by B cell profiling in the blood(25/09/14)

Introduction: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients.

Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation.

Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS).

Results: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation.

In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorised MS relapses into three different patterns.

Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse.

The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77).

Conclusions: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.

Author: Christopher HohmannBianca MillesMichael SchinkeMichael SchroeterJochen UlzheimerPeter KraftChristoph KleinschnitzPaul V LehmannStefanie Kuerten Credits/Source: Acta Neuropathologica Communications 2014, 2:138

Source: 7thSpace Interactive © 2014 7thSpace Interactive (25/09/14)

Retinal thinning oarallels neurodegeneration in MS(12/09/14)

The thinning of the retina that occurs during the course of multiple sclerosis (MS) closely parallels brain atrophy and may be used to measure neurodegeneration, a new study has shown.

Presenting the data here at MSBoston 2014, the 2014 Joint Americas and European Committees for Treatment and Research in Multiple Sclerosis (ACTRIMS/ECTRIMS) meeting, Shiv Saidha, MD, Johns Hopkins Hospital, Baltimore, Maryland, explained that previous studies had correlated retinal thinning with global disability and brain atrophy, but these studies were primarily cross-sectional in design.

"Our study is groundbreaking in that it is the first ever longitudinal study to look at how retinal changes measured by optical coherence tomography (OCT) track with MRI measures of brain atrophy," he said. "These results could have far-reaching implications for the field of neurodegeneration."

"We showed clearly that the degree of retinal layer thinning predicts the loss of brain tissue. Patients who lost the most neurons in the retina had the highest amount of brain loss on MRI."

He added: "It was particularly effective in patients with progressive MS, but it can be used from the very beginning to identify which patients are deteriorating the fastest."

The MS field has suffered from a lack of tools to track neurodegeneration, and much work is underway to identify such markers, Dr. Saidha added. "Our data shows that measuring changes in the retina with OCT is one of the most promising techniques for this purpose."

"It is easy to do — it takes just 5 minutes to assay the retina," he commented to Medscape Medical News. "It is cheap and easily reproducible. In my view, it is very encouraging."

Validation for Use in Clinical Trials

These opinions were echoed by the chair of the Young Investigators session at which Dr. Saidha presented the study, Patrick Vermersch, MD, Centre Hospitalier Régional Universitaire de Lille, France.

"This study is really interesting," he told Medscape Medical News. "This methodology adds complementary information to explain the neurodegenerative process in MS. Measuring retinal thinning with OCT is much easier than trying to assess brain atrophy with MRI. It is already being used as a marker of treatment response in therapeutic trials, but this study gives validation that this is an appropriate marker to measure."

Dr. Vermersch suggested that OCT may not be as sensitive as measuring brain atrophy with MRI, but it is far more convenient. "I would think MRI will be superior, but it is not widely available," he added. "It is not possible to measure brain atrophy in routine clinical practice — the specific software is only available in specialist centers for research use at present. But OCT is widely available and easy to use."

For the study, 108 MS patients underwent OCT every 6 months (average follow-up duration, 42 months) and annual MRI (3T) of the brain (average follow-up duration, 39 months). Patients with optic neuritis during the study were excluded. Individual-specific rates of change in retinal and brain measures were correlated after adjustment for age, sex, disease duration, and optic neuritis history.

Results showed that the thickness of the ganglion cell layer plus inner plexiform layer of the retina together (GCIP) had the best correlation to whole brain atrophy, with a correlation coefficient of 0.449. GCIP loss was also correlated to atrophy in gray matter (r = 0.371), white matter (r = 0.285), and thalamic (r = 0.379) regions of the brain over time.

Best in Secondary Progressive Disease

The correlation between GCIP and brain atrophy rates was stronger in secondary progressive MS (r = 0.730) and primary progressive MS (r = 0.542) than in relapsing-remitting MS (r = 0.328).

"Although the association between GCIP and brain atrophy in relapsing-remitting MS is impressive, the association in progressive MS, particularly secondary progressive MS, appears to be exceptional," Dr. Saidha stated.

The relationship between GCIP and brain atrophy was affected by history of optic neuritis, which reduced the strength of the correlation, especially in the relapsing-remitting population.

Dr. Saidha reported that for every yearly change of 1 micron in GCIP thickness there was a 0.45% yearly brain loss in eyes without a history of optic neuritis. GCIP atrophy also mirrored lesion accumulation in MS, although this was not as strong as the relationship with brain atrophy.

"Our findings confirm the utility of OCT for tracking subclinical as well as clinical disease progression in MS and establish a role for OCT in clinical trials for the objective investigation of neuroprotection," Dr. Saidha concluded.

Primary Source: MSBoston 2014: 2014 Joint Americas and European Committees for Treatment and Research in Multiple Sclerosis (ACTRIMS/ECTRIMS). Abstract Y12.2. Presented September 10, 2014.

Source: Medscape Multispeciality © 1994-2014 by WebMD LLC (12/09/14)

Visual system as a predictor of change from CIS to MS(10/09/14)

Evaluation of visual structural and functional factors that predict the development of multiple sclerosis in clinically isolated syndrome patients.

Perez-Rico C, Ayuso-Peralta L, Rubio-Pérez L, Roldán-Díaz I, Arévalo-Serrano J, Jiménez Jurado D, Blanco R.


PURPOSE. To evaluate visual pathway structure and function in patients with clinical isolated syndrome (CIS) using spectral domain optical coherence tomography (OCT) and multifocal visual evoked potentials (mfVEP), predicting CIS conversion to clinically definite multiple sclerosis (MS).

METHODS. This observational, longitudinal study assessed the eyes with no prior history of optic neuritis of twenty-nine consecutive patients with CIS according to the McDonald criteria. The relationships of the mfVEP results with the clinical findings, psychophysical (Humphrey perimetry) and structural (OCT) diagnostic test data were investigated.

RESULTS. The mfVEP amplitude responses (interocular and monocular probability analysis) showed abnormal cluster visual field defects in 48.3% of the CIS eyes, while mfVEP latency analysis showed significant delays in 20.7%. OCT average RNFLT (retinal nerve fiber layer thickness) was significantly reduced compared to the control group (P = 0.02). Significant differences between CIS eyes with abnormal and normal mfVEP latencies were found for the OCT RNFLT (P < 0.001) with a longer latency being linked to more severe axonal damage. Using multivariate logistic regression analysis, OCT average RNFLT was found to be independent predictor of clinically definitive MS diagnosis at twelve months.

CONCLUSIONS. The combined use of OCT and mfVEP is helpful to detect significant subclinical visual pathways abnormalities and axonal loss in CIS patients. Retinal axonal loss measured by OCT is an important prognosis factor of conversion to MS in patients with clinically isolated syndrome in absence of symptomatic optic neuritis.

Source: Invest Ophthalmol Vis Sci. 2014 Sep 4. pii: IOVS-14-14807. doi: 10.1167/iovs.14-14807 © 2014 by Association for Research in Vision and Ophthalmology & Pubmed PMID: 25190654 (10/09/14)

Is the intestinal barrier damaged in MS?(05/09/14)

Researchers at Lund University in Sweden have published new research findings on the role of the intestinal barrier in the autoimmune disease multiple sclerosis (MS).

Within medical science, it is not known for certain how MS develops or why the body’s immune system attacks cells in the central nervous system. Inflammation develops for an unknown reason, which hinders transport of neural impulses. This can produce various physical and mental symptoms, including a loss of sensation, motor difficulties, blurred vision, dizziness and tiredness.

The present study investigates whether the function of the intestines is also attacked in MS. The results, obtained from a disease model of MS in mice, shows inflammation and changes in the barrier function of the intestines early in the course of the disease. The study has been published in the scientific journal PLOS ONE.

“We know that the permeability of the intestines to harmful substances is raised in inflammatory bowel diseases such as Crohn’s disease and ulcerous colitis, as well as in some other autoimmune diseases such as type 1 diabetes. The condition is called ‘leaky gut syndrome’. Our studies indicate a leaky gut and increased inflammation in the intestinal mucous membrane and related lymphoid tissue before clinical symptoms of MS are discernible. It also appears that the inflammation increases as the disease develops”, said Shahram Lavasani, one of the authors of the study.

Dr Lavasani and his colleagues at Lund University have previously shown that probiotic bacteria could give a certain amount of protection against MS. They therefore wondered whether the intestinal barrier is affected and decided to investigate inflammatory cells and processes in the intestine. The hypothesis was tested in a research project in collaboration with Professor Björn Weström, doctoral student Mehrnaz Nouri and reader Anders Bredberg.

“To our surprise, we saw structural changes in the mucous membrane of the small intestine and an increase in inflammatory T-cells, known as Th1 and Th17. At the same time, we saw a reduction in immunosuppressive cells, known as regulatory T-cells. These changes are often linked to inflammatory bowel diseases, and biologically active molecules produced by Th1 and Th17 are believed to be behind this damage to the intestines.”

Neuroinflammatory processes in MS are believed to lead to damage and leakage in the blood-brain barrier that protects the central nervous system and regulates the transport of cells. The researchers have now observed similar damage in the intestinal barrier, especially to the ‘tight junctions’ that bind the cells together in the mucous membrane of the intestine, and have demonstrated that these are connected to disease-specific T-cells.

“In most cases, we don’t know what triggers autoimmune diseases, but we know that pathogenic cells frequent and disrupt the intestines. A leaky gut enables harmful bacteria and toxic substances in the body to enter the intestine, which creates even more inflammation. Our findings provide support for the idea that a damaged intestinal barrier can prevent the body ending an autoimmune reaction in the normal manner, leading to a chronic disease such as MS”, said Dr Lavasani.

Shahram Lavasani and his colleagues believe that future drugs to treat this type of disease should perhaps not only focus on the central nervous system, but also on the intestines by repairing and restoring the intestinal barrier.

“In the long run, we hope that our findings will lead to better understanding of what actually happens in the development of MS. Looking even further to the future, we hope for the development of a better treatment that aims at the intestinal barrier as a new therapeutic target.”

The research group is now studying other inflammatory parameters in the gut that could affect the development of MS. Their aim is to draw up treatment methods that can heal the mucous membrane in the intestine in the hope of preventing the development of the disease. Some of this work forms part of Mehrnaz Nouri’s thesis, which will be defended later in the year.

Full Article - ‘Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.’

Source: Lund University (05/09/14)

Mouse model EAE is not a useful multiple sclerosis model - study(19/08/14)

EAE is not a useful model for demyelinating disease

Peter O. Behanemail, Abhijit Chaudhuri


Experimental allergic encephalomyelitis (EAE) is the commonest, readily induced, organspecific, autoimmune disorder of laboratory animals of its kind.

It is an artificial disorder brought about by the immunisation of susceptible animals with brain antigens in complete Freund?s adjuvant (CFA).

Variations can be induced by altering the nature of the antigen and the conditions involving immunisation.

Whilst it is often described as a demyelinating disease, in strict terms it is not, since the primary pathologic process is not demyelination but rather an encephalomyelitis that is immunologically induced. Rather, the prototype demyelinating disease is multiple sclerosis and its variants.

In this paper, the central question we ask is whether the data gleaned from the EAE model contributes to our understanding of the pathological events in MS.

Towards answering this, we describe the historical development of EAE and its hyperacute form, and discuss the findings studied extensively in the non-human primate which show that ordinary EAE is an exact model for ADEM in the human, and that the hyperacute form of EAE is represented by AHLE in the human. Additionally, we shall comment on the latest research on new variants of EAE, and explain our opinion regarding the use of EAE models in research aiming to understand the pathogenesis of multiple sclerosis.

Full article

Source: Multiple Sclerosis and related disorders Copyright © 2014 Elsevier Inc (19/08/14)